欢迎访问比翼知识网!
比翼知识网LOGO

卷积神经网络_卷积神经网络动画演示

2024-08-08 06:20
甜蜜蜜糖
102

什么是卷积神经网络?

卷积神经网络,简称CNN(Convolutional Neural Network),是一种前馈神经网络。

该网络经过设计,能够有效的处理具有类似网格结构的数据,例如图像或声音。

CNN数学模型中的“卷积”一词指的是,将每个神经元对周围神经元的活动反应进行求和运算。

卷积神经网络之所以能够非常适合处理图像数据,是因为该网络能够学习一些简单的特征,例如直线、角和轮廓等,然后在此基础上学习到更加复杂的特征,如纹理、自然物体,最终能够实现识别物体的功能。

因此,卷积神经网络在图像识别等领域被广泛应用。

卷积神经网络通俗理解?

卷积神经网络,简称CNN(Convolutional Neural Network),是一种前馈神经网络。

该网络经过设计,能够有效的处理具有类似网格结构的数据,例如图像或声音。

CNN数学模型中的“卷积”一词指的是,将每个神经元对周围神经元的活动反应进行求和运算。

卷积神经网络之所以能够非常适合处理图像数据,是因为该网络能够学习一些简单的特征,例如直线、角和轮廓等,然后在此基础上学习到更加复杂的特征,如纹理、自然物体,最终能够实现识别物体的功能。

因此,卷积神经网络在图像识别等领域被广泛应用。

前馈神经网络、BP神经网络、卷积神经网络的区别与联系?

前馈神经网络就是一层的节点只有前面一层作为输入,并输出到后面一层,自身之间、与其它层之间都没有联系,由于数据是一层层向前传播的,因此称为前馈网络。

BP网络是最常见的一种前馈网络,BP体现在运作机制上,数据输入后,一层层向前传播,然后计算损失函数,得到损失函数的残差,然后把残差向后一层层传播。

卷积神经网络是根据人的视觉特性,认为视觉都是从局部到全局认知的,因此不全部采用全连接(一般只有1-2个全连接层,甚至最近的研究建议取消CNN的全连接层),而是采用一个滑动窗口只处理一个局部,这种操作像一个滤波器,这个操作称为卷积操作(不是信号处理那个卷积操作,当然卷积也可以),这种网络就称为卷积神经网络。

目前流行的大部分网络就是前馈网络和递归网络,这两种网络一般都是BP网络;深度网络一般采用卷积操作,因此也属于卷积神经网络。在出现深度学习之前的那些网络,基本都是全连接的,则不属于卷积网络的范围,但大部分是前馈网络和BP网络。

卷积神经网络和循环神经网络区别?

卷积神经网络_卷积神经网络动画演示

简单来说,卷积神经网络和循环神经网络都是深度学习的重要框架。区别就在循环层上:卷积神经网络没有时序性的概念,输入直接和输出挂钩;循环神经网络具有时序性,当前决策跟前一次决策有关。

举个例子,进行手写数字识别的时候,我们并不在意前一个决策结果是什么,需要用卷积神经网络;而自然语言生成时,上一个词很大程度影响了下一个词,需要用循环神经网络。

声明:如果本文侵犯作者的权利,请联系本站予以删除。

COPYRIGHT © 2023-2025  比翼知识网  版权所有   备案号:渝ICP备15005195号-3